Harmonic functions on hyperbolic graphs
نویسندگان
چکیده
منابع مشابه
Harmonic functions on hyperbolic graphs
We consider admissible random walks on hyperbolic graphs. For a given harmonic function on such a graph, we prove that asymptotic properties of non-tangential boundedness and non-tangential convergence are almost everywhere equivalent. The proof is inspired by the works of F. Mouton in the cases of Riemannian manifolds of pinched negative curvature and infinite trees. It involves geometric and ...
متن کاملHarmonic and analytic functions on graphs
Harmonic and analytic functions have natural discrete analogues. Harmonic functions can be defined on every graph, while analytic functions (or, more precisely, holomorphic forms) can be defined on graphs embedded in orientable surfaces. Many important properties of the “true” harmonic and analytic functions can be carried over to the discrete setting. We prove that a nonzero analytic function ...
متن کاملBoundary Behaviour of Harmonic Functions on Hyperbolic Manifolds
Let M be a complete simply connected manifold which is in addition Gromov hyperbolic, coercive and roughly starlike. For a given harmonic function on M , a local Fatou Theorem and a pointwise criteria of nontangential convergence coming from the density of energy are shown: at almost all points of the boundary, the harmonic function converges non-tangentially if and only if the supremum of the ...
متن کاملON THE SHEARLET TRANSFORM USING HYPERBOLIC FUNCTIONS
In this paper, we focus on the study of shearlet transform which isdened by using the hyperbolic functions. As a result we check an admissibilitycondition such that implies the reconstruction formula. To this end, we will usethe concept of the classical shearlet, which indicates the position and directionof a singularity.
متن کاملOn the harmonic index of bicyclic graphs
The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2011
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-10931-6